Table of contents

 

 

Occultations by asteroids

 (Last updated: 2014 April 16)

 

1.0     Introduction

 

Information on observing occultations can be found on the Introduction and Circulars pages on the EAON web site. The EAON site should be considered the prime source of information on all matters relating to occultations. If there are differences between this site and theirs then please assume they are correct.

 

From time to time during the course of its orbit around the Sun, an asteroid will appear to pass in front of a star or another Solar System body as seen from Earth. Such a passage is referred to as an occultation. As the asteroid passes in front of the star the latter will appear to dim or disappear altogether. The track width of such an occultation is very narrow – approximately the same width as the asteroid eg; no more than 100 kilometres or so. When the track intersects the Earth there will be only very few potential observers situated along it. Every observation whether positive or negative, is important in defining the limits of the track.

 

Occultations are the only way, apart from spacecraft missions to asteroids and radar observations of nearby objects, to determine the approximate size and shape of those bodies and are, of course, much cheaper.

 

The International Occultation Timing Association (IOTA) web site can be found here and that of the International Occultation Timing Association/European Section (IOTA/ES) web site can be found here.

 

2.0     Predictions

 

Predictions of possible occultations are available from the European Asteroidal Occultation Network (EAON) , Euraster and Steve Preston’s web site. Predictions are necessarily only approximate as the orbits of most asteroids and the positions of most stars are not known to the required level of precision to accurately define occultation tracks well ahead of time. The margin of uncertainty thanks to the Hipparcos astrometry is probably better than +/-50 km so that the probable area of visibility is accurate in general terms. But the uncertainty is now unlikely to be greater than +/-100 km in most cases now. The predicted times will be more accurate and the probable error is of the order of +/-2 minutes.

 

Astrometry is sometimes requested prior to the event to allow the predicted track and time of occultation to be refined.

 

2.1     Next favourable event potentially visible from the UK: 2014 April 18/19:

 

(Asteroid (241) Germania occults 2UCAC 38779497

 

There is an opportunity to make an interesting observation, when this 184 Km diameter asteroid passes close to a 11.6 magnitude star in Gemini on Friday,18 April 2014, at 2059 UT (2159 BST).  The predicted track passes NW to SE over central UK and N Ireland and an occultation is expected somewhere within this region. The maximum length of disappearance  is predicted to be 8.5 seconds for someone in the centre of the shadow.

 

 

Predictions are approximations, so we need to know were the track actually passes. Observers reporting an occultation will determine this. Those not seeing an occultation

should report a “miss”  from their location.

 

The coordinates of  2UCAC 38779497 are:

Of date (2014) 7Hr 7m 58”, Dec 19d 33m 31”

J2000              7Hr 7m 08”, Dec 19d 35m 03”

 

A brighter field star HIP 34520 (v7.3) is about 0.5d East of the target ( indicated )

(Sky Map Pro V11)

 

 

Finder charts at scales from 15 to 0.5 degrees can be found here:

http://www.asteroidoccultation.com/2014_04/0418_241_32426.htm

 

 

How do I observe and report what I see ?

 

Find the star field as soon as it becomes dark with the aid of a planetarium program or the finder charts indicated in the link above.

 

With a suitable magnification, monitor 2UCAC 38779497 from 2159 to 2200 BST and note if the star disappears or not.  An 8” or larger telescope might be needed.

 

With the aid of a stopwatch and voice recording, time the start and duration of the occultation.

( The stopwatch marks the disappearance and should be stopped on a UT second  e.g  the speaking clock. The voice recording can be replayed to obtained the reappearance time ).

 

If you have a camcorder, set the internal clock to UT and use it as a voice recorder. Alternatively, point the camcorder at a clock face e.g. an atomic radio-clock.

 

Observers familiar with video or CCD techniques can make a permanent record.

 

Report your Name, Location (Google Earth Coordinates), telescope, timing method and event times to:

 

Tim Haymes, Assistant Director (Occultations),   Asteroids and Remote Planets Section

Email  [email protected]

 

 

 

 

2.2     Worldwide Predictions from the current BAA Handbook

 

Here are the predictions as listed in the current 2014 Handbook of the BAA:

 

OCCULTATIONS OF STARS BY ASTEROIDS AND DWARF PLANETS

 

Occultation events for 2014 were selected by Tim Haymes from a world list of events computed and published annually by Edwin Goffin of the VVS (Flemish Astronomical Association).  The BAA is very grateful to Mr Goffin for permission to publish his predictions in the Handbook.

 

In the table of predictions below:

Time = UT of closest geocentric approach.

 

Region of Visibility codes (RoV):

1 = North and Central America,

2 = South America,

3 = Europe, North Africa and the Middle East,

4 = South Africa,

5 = Russia,

6 = Pakistan, India, and SE Asia,

7 = Japan, China and Taiwan,

8 = Australia and New Zealand.

 

 


2.3     Example of an EAON chart

 

An example of an EAON chart is shown below. It includes star and asteroid data, duration of occultation, drop in magnitude of the star, time of the occultation, the track and finder charts.

 

 

I would strongly recommend obtaining the latest orbital elements for the asteroid from the Minor Planet Center’s Minor Planet and Comet Ephemeris Service   and plotting its predicted track on a planetarium program such as Megastar. Using a program with which you are familiar greatly reduces the chances of observing the wrong star. The example below shows the track of the asteroid from 10 – 15 Dec with the asteroid occulting the target star on 12 Dec.

 

 

 

3.0     Observing and timing the occultation

 

Spending several minutes staring at a star field through a telescope can be quite tiring and the eyes start to play tricks. This is particularly the case if the target star is difficult to see due to for example; its faintness, thin cloud or a bright sky background.

 

Practicing before the event is therefore to be recommended. You may find out that some obstacle is blocking your view of the event particularly if the target star is low down. It will also help you to identify the correct star field and, if the asteroid is bright enough, see it moving towards the target star. Such practice will also enable you to set the eyepiece in such a position that the event can be viewed from a comfortable sitting position if at all possible.

 

An alarm clock with two alarms is extremely helpful. Set the first alarm to one minute before the predicted time and the second for the end of the observing period. This way you can increase your concentration nearer the predicted time and know when to stop.

 

At the telescope, monitoring of the target star should commence some minutes before the predicted time and continue for at least the same period after it (the occultation prediction data will usually include a suggested time period). At the instant of occultation the brightness will reduce by the predicted amount, which depends on the relative brightness of the asteroid and star being occulted. Beware also when making an occultation observation of so-called secondary events which may happen some time either side of the primary occultation . Although termed `secondary', such an event may also produce a dip in brightness virtually identical in magnitude to that of the primary event. Any secondary event may represent an occultation by a satellite of the minor planet.

 

See EAON Circular #5, Parts two, three and four for detailed explanations of various methods of recording the time of the occultation.

 

4.0     Time keeping

 

A radio controlled clock which uses the broadcast time signals to update the display will indicate the time to the necessary degree of accuracy. One’s error, or Personal Equation (PE), can be calculated and the occultation timings modified accordingly.

 

See also EAON Circular #5, Part Five, Short notes about time-keeping sources.

 

4.1     Timing example

 

An example of timing using a stop watch (with lap timing feature) and a radio controlled clock and assuming a ‘Positive’ result.

 

Activity

Stopwatch

Stopwatch time

Time of occultation

Time with PE applied

Star dims or winks out completely

Press Start

0

20:59:48

(21:06:00 – 6 mins 12 secs)

20:59:47.7

(21:59:48 – 0.3)

Star returns to normal brightness

Press Lap

6.5 secs

20:59:54.5

(20:59:48 +6.5 secs)

20:59:54.2

(20:59:54.5 – 0.3)

Radio controlled clock indicates a complete minute eg; 21:06:00

Press Stop

6 mins 12 secs

 

 

 

4.2     Personal Equation

 

One’s reaction time or Personal Equation (PE) should be calculated and subtracted from the times reported. The PE can be estimated using a stop watch as follows;

- cover the seconds, tenths and hundredths of second’s digits

- start the stopwatch

- press stop when the next full minute is indicated

 

The indicted seconds and fractions of seconds will be your reaction time. Repeat the exercise say thirty times and take the average (mine was 0.3 secs). See EAON circular #5, Part one, Personal equation and accuracy for a more detailed explanation with examples.

 

A simulation of an occultation allowing the observer to determine their 'Personal Equation' can be found here. A more amusing example can be found here.

 

5.0     Reporting

 

By joining the PLANOCCULT mailing list (use link on the Euraster ) observers can see the occultation reports submitted by other observers. Reports should be sent to this list and copied to Gilles Regherre at [email protected] and Jan Manek at [email protected] . The ARPS Director is a member of PLANOCCULT and will thus see all reports submitted.

 

Information about the sizes, shapes and positions of asteroids comes from the occultation observations. Each positive observation gives a chord length across the minor planet and its precise position at that time. It is well worth attempting to observe the occultation if your site is close to but not on the predicted track. Such negative observations (ie; no occultation observed) help to set limits on the size of the asteroid. If poor weather prevents observation then a report should not be submitted.

 

Below is an example of how the approximate shape of an asteroid was derived from a number of observations. The importance of ‘Negative’ results are clearly illustrated. Observers 2 and 20 (and some others) didn’t see the occultation but their results put limits on the size of the asteroid.

 

 

A reporting form is available from EAON . Report summaries can be found on the EAON and Euraster web sites.

 

6.0     Results

 

European reports can be found on the Euraster website. Mike Kretlow’s database can be found here. This database was launched on 12 November 2007 and, at that time, was still under test.

 

7.0     Conclusion

 

You have to be fairly dedicated to do this stuff. Remember the ‘Rule of Ten’ ie; for every ten occultations you prepare for the weather will wash out nine of them and for every ten you actually observe you may get one ‘Positive’ . Remember however that, for those observing close to the edge of the predicted track, ‘Negatives’ are just as important as ‘Positives’.  Now that predictions are improving the ratio of ‘Positives’ to ‘Negatives’ may be improving so go out and prove me too pessimistic!!!

 

Having put you off observing occultations for ever just remember that the greater the effort put in the more rewarding is the actual success when it comes – so do give it a try.

 

 


Table of contents